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AREA-TLME LOWER-BOUND TECHNIQUES WITH APPLICATION TO SORTING

G. Bilardi+ and F. P. Preparata

ABSTRACT

The area-time complexity of VLSI computations is constrained by the flow

and the storage of information in the two-dimensional chip. We study here the

information exchanged across the boundary of the cells of a square-tessellation

of the layout. When the information exchange is due to the functionil dependence

between variables respectively input and output on opposite sides of a cell

2
boundary, lower bounds are obtained on the AT measure (which subsume bisection

bounds as a special case). When information exchange is due to the storage

saturation of the tessellation cells, a new type of lower bound is obtained on

the AT measure.

In the above arguments, information is essentially viewed as a fluid whose

flow is uniquely constrained by the available bandwidth. However, in some

computations, the flow is kept below capacity by the necessity to transform

information before an output is produced. We call this mechanism computational

friction and show that it implies lower bounds on the AT/log A measure.

Regimes corresponding to each of the three mechanisms described above can

appear by varying the problem parameters as we shall illustrate by analyzing the

2
problem of sorting n keys each of k bits, for which AT AT, and AT/log A bounds

are derived. Each bound is interesting, since it dominates the other two in a

suitable range of key lengths and computations times.
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1. Introduction

Considerable attention has been devoted in recent years to the establishment

of lower bounds to the principal measures of performance of VLSI circuits, that

is, chip area A and computation time T. Typically, these lower bounds are in

the form of area-time tradeoffs and are based on minimum requirements on the

amount of information that must cross suitably chosen sections of the circuit chip..-

Lower bounds to performance measures are valid within a well-defined

computation model. In keeping with common practice, in this paper we adopt the

so-called synchronous VLSI model.

A computational problem nI is a boolean mapping from a set J to a set 0of

input and output variables, respectively. The mapping embodied by TI is realized

by a boolean machine described as a computation graph, G - (V,E), whose nodes

V are information processing devices or input/output ports and whose arcs E are

wires.

A VLSI chip is a two-dimensional embedding of this computation graph,

according to the prescriptions of the model. The model is characterized by a

collection of rules concerning layout, timing, and input/output (1/0) protocol;

in addition, the model restricts the class of computation graphs to those having

bounded fan-in and fan-out (without loss of generality, this bound is assumed to

be two).

The layout rules are:

1.. Wires (arcs) have minimum width 'k and at most 'wires ( )can v

overlap at any point;

2.Nodes have minimum area cX , for some c > 1.

No loss of generality is incurred if the layout is restricted to be an embedding .

of the computation graph in a uniform grid, typically the square grid: the latter
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is the plane grid the vertices of which have integer coordinates (layout grid).

The layout rules may contain the additional specification that all 1/0 ports be

placed on the boundary of the layout. Chips obeying this constraint are

referred to as boundary chips; unless otherwise noted, we shall consider

unrestricted chips, where 1/0 ports can occur anywhere in the layouts.

The timing rules specify that a bit requires a fixed time T(hereafter,

assumed equal to 1) to propagate along a wire, irrespective of its length

(synchronous system). Finally, the 1/0 protocol is semellective (each input is

received exactly once), unilocal (each input is received at exactly one input

port), time- and place-determinate (each 1/0 variable is available at prespecified

port and time, for all instances of the problem).

For a given problem ni, a tradeoff between the chip area A and the computation

time T is conveniently expressed by the family of functions

A a M T, TE [T (n),T (n)]
ni min max

where n is the input size, a3 MT is the area of the smallest design that solves
n

7 in time T, T is the minimum time required to solve II (regardless of the area),

and T is a time such that, for T > T ,a CT is constant with respect to T.max max

Equivalently, a tradeoff is expressed as a relation g(A,T)- Q2(f(n)), for a

Suitable function g.

oa date, almost all known area-time lower bounds belong to one of the three

following classes:

()Invut-outnut flow bounds. They are of the form ATm : (J + 00

V •

, qoe
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and follow directly from the fact that the maximum number of bits that can be

exchanged with the exterior in a time unit is proportional to the number of

I/0 ports, which in turn is at most proportional to the chip area.

(2) Internal-flow bounds. They are typically of the form AT2 - n(I2

where I is the bisection-information of nI, i.e. the minimum amount of

information that must be exchanged across any section that equipartitions the

set V [1]. When I is known, the bound follows from the fact that the area ia

at least proportional to the square of the minimum bisection width b, and that

the number of bits that can be exchanged across this bisection in a time unit is

at most proportional to b.

(3) Node-degree bounds. To our knowledge, this type of bound has been

developed only in connection with integer addition [ 2,3] and can be stated in

the form AT/logA - Such bound hinges on the fact that, since the

computation time of output functions depends on the number of their arguments,

information must reside within the chip for a certain duration.

In this paper, with the intent to take a further step toward the development

of a coherent theory of VLSI complexity, we develop a finer analysis of internal :6.

f low by considering subdivisions of the chip, which are more demanding on the

information flow than balanced bisection.

In Section 2, we introduce a novel technique, called "square tessellation",

which is based on a partition of the chip into square cells of equal size,

and on the information exchanged across the boundary of these cells.

When the mechanism forcing the information exchange is the functional

dependence between variables that are input inside and output outside a tessellation'

cell (or vice versa), the tessellation technique leads to bounds on the AT

measure (of which bisection bounds are a special case).
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We also identify a new mechanism of exchange, due to storage saturation

of tessellation cells, which leads to bounds on the AT measure. Indeed,

storage limitations may affect the information exchange in several ways. For

example. during the computation, a cell may fill its storage (a situation

* referred to as "saturation") and hence be forced to send some information

outside, just for temporary storage, and to receive it back at a later time.

In other situations, some information input outside of a cell is needed by the

* cell at several different times. If the amount of this information exceeds the

storage capacity of the cell, the information must be transmitted through the

boundary each time.

* It must be pointed out that, although both the input/output flow and the

internal flow due to saturation lead to AT bounds, the phenomena involved are

completely different. Indeed, input-output flow occurs through a two-dimensional

2* section and has the physical dimensions of bits/(length) , while internal flow

occurs th~rough a one-dimensional section and is expressed in bits/length.

When considering either I/0 or internal flow, information is essentially

viewed as a fluid whose flow is uniquely constrained by the available capacity

(bandwidth). However, in some computations, the 1/0 flow is kept below capacity

* by the fact that information has to be transformed before being output, and that

rhis transformation cannot be instantaneous due to the bounded fan-in and

Ean-..out of the gates. In the context of the fluid-dynamic analogy of VLSI

computation, it seems appropriate to call this mechanism "computational friction *

g eneral. framework for this phenomenon is also developed in Section 2.

~ -..-:~:-..-.*f.-/........-.***,*.*..*-.*.. .*.**.**A,
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In Section 3 we illustrate the techniques introduced in Section 2 by

2deriving new AT2 , AT and AT/logA bounds for the problem of sorting n k-bit

keys. Each bound is interesting since it dominates the other two in a suitable

range of key lengths and computation times. In Section 4, we briefly mention

analogous results in relation to the problem of cyclic shift, merging, and

' record sorting.

After completion of the work reported in this paper, we have learned that

2some AT bounds based on the notion of tessellation had been previously derived

in unpublished work by Angluin [4], and that Siegel [12] reports the same AT2

tessellation bound as our Theorem 7.

We also mention that partitions of the layout into multiple regions .

(different from square tessellation) have been used in [5] to study the

area-time complexity of =ultilective protocols.

.. .. ....
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2. Square Tessellations and Lower Bounds on Performance Measures

The general background of all considerations developed in this section is

a partition of the laid-out computation graph into two portions, which, when

appropriate, will be identified with two processors P and P cooperating to1 2

solve the given problem n.

The partition may refer either to topological properties of the graph

(sets of vertices and edges), or to its computational properties (set of I/O

variables). The two cases are referred Lo as "dichotomy" and "I/0 assignment"

respectively, as expressed by the following definitions:

Definition I. IfV -9 U O is the set of I/O variables of n, an I/0

assignment for 11 is a partition 11, 2 ) of V.

Definition 2. Given a graph G - (V,E), a dichotomy of G is a partition

(VL.V2) of V; 6(VI,V2), called dichotomy width, is the number of edges connecting

V. to V
. 2'

The square tessellation, to be introduced next, is a device that we use to

generate partitions. Let the auxiliary grid be the translation of the layout

grid by the vector ( , ).

Definition 3. A square tessellation with sidelength Z is a subgraph of the

auxiliary grid formed by two sheaves (x - + J: j > 0} and {y + jZ :j > 0}

of evenly spaced rows and columns with spacing Z.

A square tessellation is a partition of the plane into identical Z Z 2.

tiles :ailled cells, i.e. it is a geometric oartition. : can be useo c orocduce

a dichotomy (and the associated 1/0 assignment) by identifying an individual

cell with one term of the dichotomy, and the rest of che layout with the other

term. The outstanding feature of the tessellation technique is that it

permits accounting for the simultaneous presence of all other cells.

....................................... ,-._ .. / , .,.-,-.. .- .' . .".. -"-"-" v -- '. .. , ." . -" '. -'. ", - , -" , ."'- " ." - .-'" -, ". ". "' -".: l- "' ."
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We begin by obtaining a lower bound to -he area A of the layout in terms

of (topological) properties of the graph.

- 2.1. Lower bounds on the area of the chip

Given a graph G - (V,E), and an integer 0 < m < IVI,consider the set

r {(v1 ,V jV1 m} and letm ( '2) -

S(m) - min 6(vv 2 ), (1)
(V1,V2) r

i.e., 6(m) is the smallest dichotomy width over all dichotomies of V with

fixed ratio IVII/IV2 . Thus, &(LIV!/ZJ) is Thompson's minimum bisection

width [1]. We can now state the following theorem:

Theorem 1. For every graph G " (V,E) and every m < 1VI

A - 2.(V'6  (2)
m

Proof: We position the layout rectangle R with its southwest corner at

,( ,. and partition it by means of a square tessellation, with spacing

-i((m) - l)/4. Both sides of R have length at least 5(m)-l. In fact, we

can cut R by means of a vertical cwo-bend polygonal line on the auxiliary grid

(zig-zag line), into two polygons one of which contains exactly m vertices.

Thus, at least 5(m) edges cross the cut, 6(m)-I of which are horizontal, and

the vertical side has length at least 5(m)-l. A similar argument applies to

* the horizontal side. Then R contains at least 16 cells of the tessellation

and the smallest tessellation rectangle R' containing R has area at most

25/16 times as large as the area of R. We now claim that each cell of R'

" contains fewer than m vertices of G. Indeed, if a cell contains m or more

. vertices we cut it, by means of a zig-zag line, into two polygons one of

* . - .* . * --.-
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which contains exactly m vertices; this polygon has perimeter

p < -4 L(6(m) - 1)/4j < 6(m) - 1, so that fewer than 6(m) edges cross the

ce-l boundary contrary to the definition of 6(m). It follows that at Least

rFlVI/m cells of R' contain some node of G, and therefore overlap with R.

The area of R' is at least as large as the global area rIVI/m (L(6(m)-l)4J) 2

of these cells, so that A is at least 16/25 of it. C

The best lower bound to the area of a layout of G is obtained for the

value m0 of m that maximizes the ratio 6 2(m)/m. For most of the computation
0 

2graphs considered in the literature m 0 - IVI/2, yielding A - n(6 (m)). This

accounts for the success of bisection techniques. We shall see later that for

the computation graph of some significant problems - such as sorting-6 2(m)/m

achieves its maximum for values of m considerably smaller than !V1 .

Since the graphs to be considered in this paper are computation graphs,

it is convenient to establish a link between the notions of dichotomy and of

1/0 assignment. Specifically, in a computation graph G a subset U of V is the

set of I/O ports, and v E U handles qO(v) variables during the computation; in other

words, an integer-valued function (Oon V adequately identifies the I/O ports,

each with its multiplicity. The fact that, for some v E U we have cp(v) > 1,

introduces a "coarser granularity" in the partition of the I/O variables, which

must be dealt with.

o achieve a oossibl7 useful broader generality, for G (VE) we consider

arbi-trarv. weighting functions cp:V - 1i (the nonnegative integers), and denote

by 0 m maxi(v):v E V" and by M Z (V(v), the global weight. For ann ax " vE V

integer m < X, define the following class of dichotomies:

(V V,V,) :m - oa+1 < ((v) < 2; (3)
1 Imax "-

Sr- V--
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Intuitively, a weighting function models a general distribution of input/

output variables, and the generalized definition (3) of class of dichotomies

copes with the input granularity, as expressed by .max By a straightforward

modification of the proof of Theorem 1, we can then establish:

Theorem 2. For a graph G - (V,E), let (P be a weighting function (D on V -

with parameters M and ,max and let r satisfy (3). Define

6 min S(V1 ,v2).
(V 1 V2 ) E r

Then 2

A -<M - ). (4)

Note that when cv(v) - =max 1 for every v E V, M IVI, r becomes rm

and (4) subsumes (2). It must be stressed that the notion of dichotomy

pertains to a given graph; we shall now see how relation (4) will be instrumental-.

to obtain area-time lower bounds on all graphs solving a given n.

2 -2.2. Area-time lower bounds based on information exchange (AT -theory)

In this section we shall consider a graph G = (V,E) as a computation graph

solving problem n in time T, and we shall establish a lower bound to its layout

Sarea as a function of T and of parameters of a.

The starting point of the argument is a dichotomy (Vl V2) of V. This

dichotomy naturally identifies two processors P1 and P.,* where P. is defined as
11

Che subgraph induced by vertex set V (i - 1,2). In turn, if we define T.
i.,

as the i/O variables of a handled by processor Pi (i - 1,2), then we obtain an

I/O assignment (7V,I ). Such assignment is characterized by a very important
12

parameter, called "information exchange", as expressed by the following

definition (similar definitions have been considered by many authors, e.g.

[1,6,7,81):

| ,..-.



-:.10

Definition 4. The information exchange of n under assignment (V ,)
1. 2

is defined as

I(7(,V 2 ) t the minimum over all the algorithms (which solve TI under

assignment (T1 ,T))of the maximum over all the problem instances of the number1
° 

2

of bits exchanged between P and P
1 2"

In other words, for any algorithm that solves 11 under (VI 2) there is at

least a problem instance for which P1 and P2 exchange I(Vi,V 2) or more bits, and

no integer larger than I('Tl, ) enjoys the same property.

In the following, (', 2) can be an arbitrary member of a class H of

assignments, so that we need to lower-bound the information exchange for all

members of this class. The argument is completed by considering a class of

dichotomies of an arbitrary, but fixed, graph G solving n in time T, and the

corresponding class H of I/O assignments, and by bounding the dichotomy width

of G in terms of the information exchange of H and the time T.

More formally, for a class H of 1/0 assignments for a, we define

I min I(VV)(5
Vr ) E H 1' 2

We now relate 3 of a given class r of dichotomies of G with the I" of the

corresponding class H of assignments:

Lemma 1. Let r be a class of dichotomies of a graph G, which solves n,

in time T. Le2 H {(T Y corresponds to (Vl,V 2 ) E I}. Then:

TH
> - ,(6)

Proof. Let (V1 ,V2) E r be a dichotomy of V and Vi,.2) the corresponding

assignment. Then V1 must be able to exchange I(V1 ,V2 ) > I bits with V2 in

time T and therefore must be connected to V2 by at least ../T edges. -

r1.

.-:":"..: ":"""'"* . * '. -:, i' " " "": ... . --..* * -. - *.*:**'.*.*::.''"* :- :*"::::: ': .. ::::.... . . ... . .-:::::.":::::,-- --. :-: - : -- < <. : ::_:
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Let UC V be a set of I/0 variables of n and O(v) the number of variables

of 2 handled by node v. As the class r we consider the one defined by relation

(3), for m < 11{ and Ca < T, and obtain the following result:

Theorem 3. Let r be a class of dichotomies of G (which solves n in time T) .-

satisfying (3) for m < J'U[ and cp< T. Letting H -(( 1 ,V2 ):(V I,2) correspond.

1T -- 1.*to (V 1 V 2 E r1, we have

2 (7)
AT '( 4ii)

Proof: Immediate, by combining Theorem 2 and Lemma 1. -

Theorem 3 is the cornerstone of the so-called AT 2-theory of VLSI computation

and has far-reaching consequences. The reasons are that for most computational

problems we are able:

(i) to characterize the class H corresponding to r that satisfies (3);

(ii) to compute or bound '.

To make the tradeoff more explicit, we note that, for given parameters .

(ma and m of P, H is the class of I/O assignments for which

m - (P + I < ' fl 2. < m (8)

*-[.. .Moreover, if H is the subclass of H for which V.fi j, then

.,H } is a partition of H. Therefore, denoting l(j) .,.
mj- m- Omax+l ' "I m

by the definition (8) of I, we have

L - min{i (m-pmax 4)...,t(m).

Therefore we can work with 1(j) to obtain a lower bound to I.. Notice at first

that 1(j) - I(j-l)!< 1, since by just sending one bit from P to P we can
1 2

transform an assignment in H to one in Hi_, (or vice versa). Thus, by using

1(0) - 0 and the above inequality we obtain

. • ... * .

~~.'.... . ...........-............. ,,- . .....-......-..-- ,--,.- "-,.-.'-.,- -x,,.... • " .. " . "• " " " - " " ."." • . " .. .. . - "-,"".".,'_." ." , ". ". ","".""."",. .',,.¢.**C *v .* *." "" * *'*. "; ,'.," .'.-"."" ...- ...
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I(m) < m , (9)

IRm % < ax- 1.(0

This inequality is used crucially in the following theorem.

Theorem 4. Let G be a computation graph solving H in time T. Then

AT2 n

Proof. Let x - max (P(v). Let r be the class of dichotomies of G
vEV

satisfying (3) and H its corresponding class of I/0 assignments. Clearly,

0 max< T, since each port reads or writes at most one bit per unit of time.

Relation (10) becomes I(m) - < i T -1, or equivalently H > I(m) - T + 1.

Therefore relation (7) can be rewritten as

AT 2 • I (M)-T+l) 2.;

for some constant kI . This bound may become weak for large values of T;

however, for large T, we expect AT to remain large. Indeed, we have the interplay

of two contrasting phenomena, an I/O bound (prevailing for large T) and an

information-exchange bound (prevailing for small T) ( * ) . Specifically, the I/0

bound AT > 14 yields

2AT ' I IT; (>2)

Combining relations (ii) and (12) we obtain

2 ((m)-T+l) 2 T}AT2 >JUma

(*)Lower-bound arguments of analogous flavor are due to Savage [9 ] and

Brent-Kung [ 101.

",.'.-..'.-:. :,"."."... -",". . "-" ""." . .-. ' ,. .- ' " -. " . . . ."' . , "." . .& m .' ,,_.- 7 " -! *"t-_' -' .- . - -- - - 1!
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If we choose for T the value T 1 (m)/(21(m)+(m/kl)), then we have
0 -

1. T < T Trivially, I(m) - T + 1 > I(m) - T. Since (I(m)-T)2 is a-'
decreasing function of T, it achieves its minimum at T0 , whence:

(I(m)-T+l)2 > (I m)-I 2(m)/(21(m)+(m/X1)))
2 > I mC (I+(Ml1))/l(21+2(m/X ] - (W)/,

12 l l 2 -
2. T > T By (9), I(m) < m, whence T > T > (m)/(2m+m/X > (m)/4m

taking X, < 1/2.

This completes the proof of the theorem. -

2.3. Saturation area-time lower bounds (AT-theory)

When we ideally isolate a region of the layout of a VLSI system, not only

is the bandwidth between this region and the remaining part of the layout bounded '

by the perimeter of the region, but also the amount of information that can be

stored within the region is bounded by its area. This fact has important

consequences for the area-time performance of some computations. In this section

we develop techniques to express these effects in a quantitative manner. ,

In the familiar framework where processors P and P2 cooperate to solve

problem 71, we now assume that only a limited amount s. of storage is available '1 :

in ?. (i - 1,2), and refine Definition 4 as follows:

Definition 5. The information exchange of H under assignment ( 1ir 2) and the

condition that Pi can store at most si bits (i - 1,2) is defined as:

I( , I S1 ,S 2 ) the minimum over all algorithms (which solve t under assignment

1,V2) and storage bounds s1 and s2) of the maximum over all tt-

problem instances of the number of bits exchanged between P an..

1.-
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In analogy with previous definitions, for a class H of assignmpnts for I

we have

- min I( V,2 is Is2  (13)
flsY 2 (V 1VE 2'

1 2

and let I(mss 2) - (sls2). Note that ((V 1T,2 )Ists2 is nonincreasing

function of sI and s2 (more storage never hurts), whence

12Vl'72)  j= ,'.) < V1,V2 1sl's2)"
We now identify with processor P a cell of a square tessellation of the

layout with sidelength 1, and let m be the number of variables handled by P".

2Clearly the storage of P is upper-bounded by Z , and we have

2 2 2
I(ml ss 2) - I(mjt ,A-2) > i(mi 2,+a), where A is the layout area. Since the

cell's perimeter is 4Z., we conclude

2
T > I(mZ ,+= (14)41.

If 1I variables are input/output in area A,for any '?_ %" there is at

least one cell of the tessellation that handles at least !14 Z 2/A2 variables of 1.

However, due to the granularity of the input/output there may be no cell

nandling exactly Z /A variables; on the other hand, if cell C handles more

2 2than 114 IA variables, since 0max  T,a zig-zag cut will isolate a portion "

2 2of C handling (1141Z /A + h)variables for some h satisfying 0 < h < T. Thus

we can write
[[ t Z I +2 + h +2'"

T > + h Z2-/4Z for some h E [0,T-l].

% This discussion proves the following theorem.

.-

_~~~~~~~~~~................................ .. ........ ... ... ... .. ::+ .. .., , .. .° ., ., , , - - -: ..



15

Theorem 5. Let G be a computation graph for problem n. Let be a set of

I/O (binary) variables of IL If H is the class of assignments such that
m

exactly m variables of t are assigned to Pis and I(mjs,,n) is the information

exchange of Hm when P has s bits of storage, then the area-time performance of

any layout of G satisfies the bound for arbitrary Z: 'C

min 1 ( " + hI2.2,2 /. (15)
o<h<.-

Remark 1. To obtain the best bound we choose the value of Z that maximizes the

right-hand side of (15).
£2 £2,)4.

Remark 2. If I(mls,-) is increasing with m, then T > I(114- "-

Remark 3. If for the value Z£0 of . that maximizes (15) we have I(mZ 0,®) Sm

for some constant B (as is found in all applications considered so far)L-.-

then we can rewrite bound (15) as

2m

0

0

or equivalently

AT> ( z). (16)
0o

Usually Z is an increasing function of 114 so that (16) is a stronger bound

than the straightforward I/0 bound AT - n('I4).

.'.

............................ . . .- -... .. . -....-... --. - ..".-- -'.- -.-".-'.".-i.-.- -',-.- -'-"".. -.'-,'""- '''.'--,"
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2.4. Area-time lower bound due to computational friction (AT/logA-theory)

In all of the previous considerations we have viewed the computational ,.

process inside a VLSI chip as a fluido-dynamic phenomenon, so that the ..

performance bounds are determined by the ability'to ensure certain flows within

the prescribed time. Note that this viewpoint is completely oblivious of the

fact that the vertices of G have bounded fan-in and fan-out; however, computation

delays are exactly due to these limitations, which we now wish to bring into

the picture.

We begin by considering the notion of "functional dependence".

Definition 6. Given a function y - f(x), where x- (x1,...,x) and

" (l"'''q) are boolean vectors, we say that yj is functionally dependent

on x. if there exist two boolean vectors x' and x" that differ only in the

i-th component, such that y' - f(x'), and " - f(x") differ in the J-th component.

We now explicitly consider that all gates of our circuits have fan-in

bounded by a constant f if output variable y is functionally dependent on s

input variables, then at least logf s time units must elapse between the instant

when the first of the input variables is read, and the instant when y is output.

Hereafter we assume f, 2.

Informally, suppose that s variables xl.'..,x are input at the same time,

and that there exist r output variables yI'''''Y with the following properties:

(1) each y is functionally dependent on all x. 's;

(2) the variables yl,.. .,y carry I bits of information on xi,...,x
rs-

Then since no y emerges before logs units of time, the system must be capable

of storing I bits for logs units of time, or AT > I logs. In other words,

in the analogy where information is a fluid flowing from input ports to output

S-a...!. . . . . .". ..-- a
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ports, we can say that functional dependence acts as a kind of computational

friction, that slows down the flow keeping it below capacity. This intuitive

notion can be formalized in the following theorem:

Theorem 6. Given a computational problem H with a set 9 of input variables":

and a set 0 of output variables, let 14 be a subset of . such that for any

partition ,. of 74 there exists a collection I ,' of disjoint subsets

of 3 (not necessarily a partition) satisfying the following properties:

(1) Each variable in 9 is functionally dependent upon at least a(114 1)
t t

variables of 14 , where a( ) is an increasing function of its argument.

(2) The variables in 2 - 't can be selected so that, for each t - 1,2,...,T.

the variables of P carry at least 8(1.4 1) bits of information relative

to '?t, where 8( ) is an increasing function of its argument.

Then, for any VLSI system that solves 1I,

T
AT > min Z 8(s t)log(s ) . (17)sl+... sT-12 -

Proof. Let us define 14 as the subset of variables of 1 that are input by .

the system (exactly) at time t. Clearly, ,..., partition Let

' T be the corresponding collection of disjoint subsets of . Because

of prcperty (1), and of the bounded-fan-in assumption, no variable in .t can

be output before time t + loga( ',). Because of propert7 (2), at least

3("14 ) bits of information on Ut have to be stored by the system in the interval

[t,t + log a(*!7 )]. Since one bit stored per T units of time contributes T to

the AT product, we conclude that

AT_ > Z (I' )loga(14 !  (18) - .;
I

t--1

• ... . .. . .- -. ... .. .. ... . ..... %..... -. -.-. -. -... . ...- - - -. - -. - .-.- .- -, ---- --j ,- . ..- , .-.
.............. ...... --

•
: -...... Hf i K IIiliii •
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ere funct of Thei partition and hence the right-hand side of (2)
t"I .

is a function of the input schedule and varies from system to system, but it is

never smaller than the right-hand side of (1). "

Corollary 1. Under the same assumptions of Theorem 1, if 8(s)loga(s) is

a downward-convex function of s, then the minimum in (1) is achieved when

s s . T - 114/T, and (1) yields,

A > 8(11A1/T)loga(1J41/T) (19)

Corollary 2. If B(s) - 80s, and a(s) a aos, then (3) can be rewritten as
0 0,

A - 1141I/Tlog(141/T), (20)

or

AT/log A = a(I f). (21)

Theorem 6 and its Corollaries I and 2 apply to chips with bounded fan-in.

Similar arguments yield analogous results for chips with bounded fan-out. In

this case, the friction arises from the fact that, if s variables y, ... $y are

output at time t, and are all functionally dependent upon input variable x,

then x must be input prior to time t - logs.

. . .. .. . . .
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3. Sorting

In this section we shall illustrate the lower-bound techniques introduced

in Section 2 by applying them to the sorting problem, which we define formally !.j

as follows.

Definition 7. In the (n,k)-sorting problem. .4

(1) The input is a sequence of n k-bit keys, each a member of a finite set of

integers.

(2) The output is a rearrangement of the input keys, so that they form a

nondecreasing sequence.

INotationally, input and output are represented as n x k binary arrays

X {X } and Y - {Yj} , respectively, with i - 0, ...,n-1, and j - k-l,...,0;i i

X is the (i+l)-st input key and Xi.is the bit position of weight 21 (or briefly,

bit position j). We can view the input of (n,k)-sorting as an (n,k)-multiset,

ki.e. a multiset of n elements each drawn from a universe of 2 values. As we .'

. will show, the nature of (n,k)-sorting changes considerably with the relative

size of n and k, and we find it useful to classify (n,k)-multisets in multisets

of short keys (I < k < logn), of intermediate-length keys (logn < k < 2logn),

* and of long keys (2logn < k). With a slight abuse of terminology, we shall use

is* phrases like "sorting short keys" instead of "sorting a multiset of short keys.

To gain intuition on the transfer of information from input to output, we

* observe that

J -~xj  0 ~,.,n1 ,1,..,k-12Yi

w where (0),r(l),...,.r(n-1) is a permutation of 0,l,...,n-1. Thus, there is an

information flow from the input to the output ports of the same position, which

. . .
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we call primary flow. In the primary flow, each bit enters and leaves the

system maintaining its identity. However, the exact destination of each bit

within its own position depends on i, which, for position J, is determined by

the values of the data in positions J,j+l,...,k-l. This information,flowing from

most significant to least significant positions, is called secondary flow.

Primary flow considerations have been used by Thompson (1] in proving the

2 2 2AT a '4(n log n) bound for word-local (n,logn+e(logn))-sorting. The bound has

been later generalized to non-word-local protocols by Leighton (11] who succeeded

in combining primary and secondary flows with the help of cyclic-shift arguments.

In Section 3.1 and 3.2, we combine a quantitative characterization of primary

and secondary flows with the general techniques of Section 2, to obtain novel lower

bounds for the problems of sorting short and long keys.

3.1 Short Keys

In this section we study (n,k)-sorting for k < logn, and denote by
r ~ 2

r = 2 the size of the universe of possible keys. We shall obtain an AT and

an AT bound. Both bounds are based on primary flow, as expressed by the

following lemma.

Lemma 2. Chosen r/2 arbitrary input bits

{x ,X0  ... X (22)
in PO Pl Pr/2-1

wnd r'2 arbitrary output bits

;.4 'Y , , ....YO (23)
out qo q, qr/2-1

w'i:h q. <i-l' the remaining input bits can be set to constant values to enforce

tne condition

0 0Y - X i - 0,1,...,r/2-1 • (24)qi Pl

%. Vj

*- - - - - - - - - - - - - - - - - - --.- - - - - - - -..'-. -.- j -' .'-',..-'°',..•-..- - .' '. % %',.
-

...
.

.
"
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Proof: We set X = 2i + X , i 0,1,.,..,r/2-1 and divide the remaining _
Pi Pi

n-r/2 input keys arbitrarily into r/2+1 sets such that, for i - 0,1,...,r/2-1,

the i-th set contains (q -ql-1) keys whose value is set to 21(ql 1 0), and

the (r/2)-th set contains (n-l-q r/2-) keys whose value is set to r/2-1. The

output sequence corresponding to this input is shown in Figure 1, and it

satisfies Equation (24). C
2

We state now the AT bound for short keys.

Theorem 7. Any VLSI (n,k)-sorter, with k < logn satisfies the bound

AT - .1(nr), (25)

k
where r 2

k-1 bits--,- r- i.s.b.

0 0
F(9-1) keys 11.0

0 0 0
Y -" 0 -, x O .-

Y9  i 0 x
Mi-i-r-1) keys r •

'%--:-- Pi

y r/2-1

""2- X0,,-r/2-1

-keys

r/2-1 1

Figure !. Sending r/2 arbitrary bits in X to r/2 arbitrar7 positions :n

..................- -. e
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Proof. Result (25) follows from Theorem 4, with 2' {X i 0,i ... ,n-11,

m - r/2, and from the bound I(r/2) - T(r), which we now prove.

0
Given a protocol that assigns exactly r/2 entries of X to P1 and

n- r/2(> r/2) to P2 9 let PS be the processor that 
outputs more entries of Y 0

(break a tie arbitrarily). From Lemma 2, we can always find two sets Ui. and

as in (22) and (23) such that tn is input by P and 14 is output by
out in 3-s out

P . Equation (24) implies that r/2 bits input by P3-s are output by P , forS S

suitable values of input variables not in 1." Hence, I(r/2) > r/2 f(r), as
in

desired. [

We shall now prove an AT lower bound based on information exchange under

bounded storage (saturation).

rheorem 8. Any VLSI (n,k)-sorter, with k < logn, satisfies the bound

AT - (nvr/) (26)

where r 2
0

Proof. Referring to Theorem 5, we choose Y , and, for some real aE [0, .

we consider a square tessellation with sidelength ,r. Thus, there exists at

least one cell C -- identified with processor P -- that outputs m > nor/A

0
entries of Y. To estimate the quantity I(mlzr,-), we subdivide the interval

[0,T] into consecutive intervals and evaluate the information exchange in each

such interval. Specifically, we form the sequence intervals

<t +h l]: 0 _ i < L, t0  -1, tL = T), so that during [ti+-l,It C outputs
~Uji+1L

m, bits of Y 0, with r/2 < m, < r/2+ar (this partition of (0,T] is well-defined,

since C outputs at most or bits per time unit).We now consider [t+1t I

individually We apply Lemma 2 by choosing the r/2 elements of 1-u among the
out

. . .

.... .... .... ... .... .... . .
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mi bits of Y and ?in C X0 arbitrarily. Since X0 must be completely input

0before any bit of Y can be output, during [ti+l ,tiI cell C outputs r/2 bits

already in the chip at t +1. But C stores at most ar bits, whence ( -)r bits

must flow across the cell boundary (of length 4/par) during the interval.

Summing this flow over all L intervals we have

I(mar,=) > L( -a)r,

and, observing that L > m/max(mi) > (nar/A)/r( +a) we obtain

+a A

Since I(mlar,-) flows across a section of length 4V'/ar in time T we have

AT > n~r (27)

which completes our proof. (Inequality (27) yields the best bound for a 0.117),-.

From Theorems 7 and 8 we know that there exist constants 5i and 3 2 such

that the performance of any (n,k)-sorter, with k < logn, satisfies the bounds

AT > 51n/i, and AT2 > 52nr. These bounds coincide for T0 (r) (32/3l)Vr ;

therefore since T > logn+r, only the AT bound is meaningful for values of k

"* satisfying ( 3 2 /l) 2 k/2 - logk < logn, while for values of k satisfying

2 2
(3 2/3 )2 k /2 _ logk > logn the AT bound is stronger for T > To o and the AT

2 bound

is stronger for T < T 0*

3.2 Long Keys

In this section, we turn our attention to (n,k)-sorting for k > 2logn.

We begin by deriving two lower bounds on the information exchange It@l," 2 ) for

an arbitrary assignment @llr 2) of variables to processors P1 and P2" The two

bounds will be based on primary flow and secondary flow, respectively.

Let C,,V2) be an I/0 assignment for (n,k)-sorting. For some real

"" E [0, , we define a number of quantities, each a function of the parameter

and of (7

" . .. .. ,". .. ... ..... .... ,I -
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b1 - number of input words whose j-th bit is input by P•2.

c 1 - number of output words whose J-th bit is output by P

j-
i jj : j < k-on n< cj < (1--y)n)

{j : j < k-logn, c > (1->)U1

: j < k-logn, c < yn,

k-logn-1
B- r bi, B - Eb• s - 0,1,2.

1-0 s j EjJ

Note that B is the number of bits input by P1 in positions with index < k-logn.

In terms of the above quantities, we can state the following results.

Lemma 3 (Primary flow). With the above definitions, for any I/0 assignment

( 1 . 2) of (n,k)-sorting, (k > 2logn), and for any yE [0• ,] the information

exchange satisfies the bound X

I (If T > y(B-B1 ) > y(B- tJ 1 n) (28)

Proof. By a suitable selection of the logn most significant input positions,

we can force the output sequence Y0 ... 'Y n- to be any arbitrary cyclic shift -

of the input sequence XO , ... ,Xn1 . If we let cD be the information exchange

pertaining to the position j over all the n different shifts, then

= b (n-c) + (n-b)c.

in fact, each of the b, bits input by P1 is output by P, (n-c.) times, and,

symmetrically, each of the (n-b.) bits input by P2 is output by P1 c. times,

By the pigeon-hole principle there is a shift size with information

exchange not smaller than the average, which ensures that

I k-logn-ln > . (29)

1J.LA

.. . . . . . ... . . . . . .
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For EJ 0 UJ 2 ' we have n-cj >yn and P > b (n-c) > b yn. Thus, (29) yields

M) > E byn - y(BO+B 2)- y(B-B l )
-- j EJoU J 2  Ilk

Z. bj 
I ln, trivially.The proof is completed by observing that BI j E l I-I t

Lemma 4 (Secondary flow). For any 1/O assignment (IY2 ) of (n,k)-sorting,

(k > 2logn), and for any y E0, ], the information exchange satisfies the bound

I 1 1,V2) > (l-y)n min(IJ 1 1,IJ 2 1,logn) - kxlogn-n . (30)

Proof. Assume, without loss of generality, that P1 reads at most half of the

bits in the logn most significant positions of X. We now construct a set J of

logn positions, so that the content of {X k-logn < i < k} can be recovered

from {YJ : j E J} . Specifically, if I.11 > logn, J is just any selection of

logn positions of J else, we augment J1 with (logn-IJi') positions not in J

and of index less than k-logn.

We then consider the following class of input instances.

(1) The leading logn bits of Xi represent integer i(i), where i is a

permutation of 0,...,n-l.

(2) The logn bits of X which belong to positions in J represent i.
i

(3) All remaining bits are zero.

Then, the output array Y has the following structure.

(1) The leading logn bits of Y represent integer i.

(2) The logn bits of Y which belong to positions in J represent

integer 7- (i).

(3) All remaining bits are zero.

Thus, 7 can be recovered from the output positions (Y j E J} . Since P1

.. . . . . . -.

. . . . . . . . . . . . . --7. * . . . . .
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outputs at least min(IJ1 j,logn). (l-y)n bits of these positions, and it reads

at most nlogn bits among the (nlogn-n40(logn)) bits that specify 7r, we have

that

I(Or, V 2  > (1-Y)n-min(lJ 1 l,1ogn) - logn -n

Considering the alternative case (i.e., P2 reads at most half of the bits in

the logn most significant positions) we obtain (30).0

2
3.2.1 AT bound

Lemas 3 and 4 can now be combined to prove:

Theorem 9. Any VLSI tn,k)-sorter, with k 2 logn, satisfies the bound

2 2AT Q (k n logn). (31)

Proof. With the notation of Theorem 4, ve choose 4 {X~ 0 < i < n

8 < < k-logn} and select P so that m -nlogn. (Note that B, the number of

bits of input by P1  is equal to m since 1.4 is a set of input variables.) With

this choice, I2UI -(k-logn)n; assuming, for simplicity, k _ 3 logn, the result

tollows from Theorem 4, if we can show I(nlogn) - Q(nlogn).

Indeed, from Lemma 3 and B nlogn, for any yE [O, ] we have:

I(nlogn) > y(nlogn - n'J 1 ). (32)

if we reverse the roles of P1 and P2 in Lemma 3, and note that P, reads

(k-2 logn)n >nlogn bits of 4, we also obtain

If~~ 2i( > logn, then inequality (30) yields

I(nlogn) > (l-y)nlogn - nlogn -n Q(nlogn)

by selecting y -0. Otherwise, (30) becomes

-- 2 * . .-~* -- p 'a..0
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I(nlogn) > (l-y)n'min(IJal,1J 21) - nlogn - n (33)

Assuming, without loss of generality, that IJi <11 'J2I we multiply both sides

of (32) by (l-y) and both sides of (33) by V, and add corresponding sides; we

obtain

I(nlogn) > y( -y)nlogn - yn - Q(nlogn),

by selecting y - . C

3.2.2 AT bound

We now turn our attention to saturation flow. Let integer t(J) E [0,T]

be the instant at which the last bit of Xi is input; we then define the

following sets:

J (t) J {j : J E and t(J) - t}.

- The sets Jl(t) t - 0,...,T-1 form a partition of J (note that, for some t,

J(t) may be empty). Note that no bit belonging to a position in Jl(t) can be

output prior to t+l. These sets are instrumental in establishing the following

result:

Lemma 5 (Saturation flow). Let s be the number of storage bits of P Given

• anI/O protocol inducing an I/0 assignment (V , and an interval [l,9 2 ] c [0,T]
1' 22

let Z J1 (-r) ' J1(Ci+1 U ... U J1 (r2) be a set of IZ < logn bit positions.

Then, for any yE (0,], we have -

T ' I2sT ) 2 s2Y) niZ - s (34)

Moreover, if [rl,1 ] are pairwise disjoint time intervals for i =1,2,..,L,

* and Zi= Jl(r) U ... U Jl('), with IZ1 .< logn, then

~ ip. , W,) -> (1-Z) Z I I -sL (35)2 2 i-

,..

. .........: .i- '-,.,
"

, .. :... ..... -: .%%- ' ..'a m..t, __.'.,, h
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Proof. Let z be the number of bits belonging to positions in Z that are output

by PI in [T1 ,T2]. We first consider the primary flow, under saturated conditions.

All IZIn bits belonging to positions in Z have been input by time T2, but none

is output prior to T1 • Since (l-y)jZln of them are output by P1 (note that

ZC_. J), then (l-y)JZln-z are output by P1 after T 2. Since P1 stores at most
1- 2

s of them, (i-y)IZin-z-s are stored in P at T and must be transferred from P
2 22

to P1 after T 2  It follows that

V1,V2 1s, -) <(l-y)lZn-z-s (36)

This primary flow bound is strong for small z; for large z, we have a

correspondingly large secondary flow. Indeed, since JZj < logn, we augment Z

to Z* by adjoining (logn-Z:) arbitrary positions of index < k-logn. Arguing

as in Lemma 4, we can show that nlogn bits relative to (X i - k-logn,. ..,k-l}

can be extracted from iY: j E Z*}. But P outputs z of these bits during

J, and, since at most s are in P at T 1, z-s must be transferred from P2
))2 2

Co P1 in [:1 ,T2]. It follows that

I (or9"2s,) k Z-s. (37) ".

Adding corresponding sides of (36) and (37) and dividing by 2 we obtain (34).

To prove the general result (35) we now claim that, if Z and Z
i j"

correspond to nonoverlapping intervals, then their contributions to

I¢lY21s,-) are independent and can be added.

Indeed, for the primary flows generated by Z and Z., Che claim followsi 3

from the fact that, although possibly overlapping in time, these two flows

carry independent information on the input values (Z Z.--

p. ° "

*' '
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For the secondary flows generated by Z and Z the claim follows from the

fact that they occur in different periods of time (T I'T] n [T ,T ).
: k-1  k- logn

*. Intuitively, P1 needs information on the leading input positions Xk ,... ,X,.

at several different times and, since it cannot afford to store that information '

permanently, every time it must receive it from P2. 0

This result is now used to establish the following theorem:

Theorem 10. Any VLSI (n,k)-sorter, with k > 2 logn, satisfies the bound

AT - 0(kn/i/T-gn). (38)

Proof. With the notation of theorem 5 we again choose2U - (Xi : 0 < i < n,

0 < j < k-logn and select P with area (storage) s - anlogn for a suitable

constant a. With this choice j I - (k-logn)n; if we can show that

I(mlanlogn,-) - n(m), then bound (38) follows from (16), since 0 4s- 4,'nlogn..

[In the following arguments we introduce parameters y, a, e, and

whose values could be chosen for a fine tuning of the lower bound. A feasible

i hoice that gives the right feeling for the range of these parameters is
AM

y - 1/12, a - 5/24, e 1/4, - 29/36 .1

For given real r E [0,1], we partition the sequence of times

0,l,...,T-l,T into two subsequences t' < t2 < ... < tu if J ) elogn
int 1 2 1n

and t" t" < ... t" if [jj(")! <clogn. Obviously
1 2 v Ii

u v
J(t') + ! " (39)

h-i1 h- I

*We now consider separately the contributions to the information exchange of

positions belonging to J1 (t) (t'-sequence) and J1(t) (t"-sequence).

.. . . - . . . . . . . . . . ----... .. * . .

° . *
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t'-Sequence. At time t, all the IJ (')In bits pertaining to positions in

J1 (t) are in the chip, and - by definition of J - at least (l-y)J 1(t)n.

of them have to be output by P Due to the bound on the storage of PI, at

least (l-y)IJl( ')In-anlogn of these bits are in P at time and will be

eventually transferred to P Thus, the overall contribution I' to the
1

information exchange associated with the t'-sequence is bounded below as

u
I' _ C(-y)n Z iJl(t)I - uanlogn. (40)

h-l
u

Since Jl(t)I . clogn, uclogn < Z IJ(')I and (40) can be rewritten as
h-i•

u

I' > (l-y-a/e)n E iJ 1 (t!)I. (41)
hl

t"-Sequence. We decompose [0,T] into the sequence of intervals ([t + l, i+l]

- 0,- ,L, t" - -1 and '4' - T) as follows: For some real (e < : < 1) and

for i - 0,... ,L-1

h i+l•F

h-h +1
i

Such a decomposition always exists, since.IJl(t)I < Elogn. Moreover,

v

L < E J1()J/(( -)logn), (42)
h-I

* since at least ( -e)logn positions complete their input in any given interval.

We can now apply Lemma 5 with (T ] - [t" +1,t" ZJ 1 .t... UJ1 (
i i+l 3 i..

and s - nlogn to conclude that the overall contribution I" to the information

* exchange associated with the t"-sequence is bounded below as

| ,-

~~iS
• . IE.

~ ~ .
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v

r' ,(l-) Z J- Lalogn
2 h-i1

which, by using (42) can be restated as

2- n": E +-i ~ t() (43) .

\ / h=i

By choosing e - +(l/e-(l-y)/ 2" ) the coefficients of the two bounds

*" (41) and (43) become identical and, by (39), we obtain -

I(mnlogn,-) > I' + I" > (1-y-a/e)nlJI (44) 3

We now observe that Lemma 3 (with B - m) can be invoked, yielding:

1(mialogn,-) > I(m) > y(m- lJiln). (45) .

If we choose ae - 1-2y, then (44) and (45) yield

I(mlonlogn,-) >_ y/2 m

and the theorem is proved.

3.2.3. AT/logA bound

We shall now consider the constraints posed by computational friction on

sorting long keys and obtain a new lower bound which turns out to be stronger

2than both the AT and the AT bounds for k large enough and for a suitable

range of computation times.

Theorem 11. Any VLSI (n,k)-sorter, with k > 2 logn, satisfies the bound

AT > S 0nk log(nk/T) (46)

for some constant SO > 0. Equivalently,

.+ .. : .+ -. .+ ..+. ....-+ -... ................... ..... ... ..... ... ... -... ,. ..... .. .. .. .. .... .....- .,. .. -, .. .. .. , , ...;.. ..' -
-; . .. * J, . - * - K:- > .+- .'. 2 :.. *' - *" *' . . . . .- . . * .* * *W*** *.m. m' mm l 
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AT/logA (nk) • (47)

Proof. We want to apply Theorem 6 to the set of input variables

- [ : 0 < i < n, 0 < J < k-logn}. To the set? .t of elements of%( input

exactly at time t, we associate the setI t of the L1(t 1/2j least significant

variables in {Yj : xJ E ' }. Ties (variables pertaining to the same bit
i i t

position) are broken arbitrarily. All the variables in 24 are functionally
t

dependent upon the r114 1/21 most significant variables of U so that -
t . t k-1 xk-logn

in the terminology of Theorem 6 - a(s) - Fs/2 . If we set the bits Xi .... -
i

to be the binary representation of i, YJ X for all i's and J's, and.
i £ t

trivially carries 14 1/2 bits of information about 1 so that s(s) - Ls/24.
t

Thus, all the assumptions of Theorem 6 and Corollary 2 are satisfied, and

bounds (46) and (47) follow from (20) and (21) with jI4 -e(nk). C

3-2.4 Remarks

From Theorem 9 and Theorem 10 we know that there exis: constants 9 and '

1 2

such that the performance of any (n,k)-sorter, with k >_ 2"logn satisfies the
bounds AT > 3knfn-log and ,adAT2 > 32kn(nlogn). These bounds coincide at time

_1 2
2

To  (32/3 1 9lo .. The AT bound is stronger for T > To, and the AT bound is

stronger for T < TO . -
0'-

If we compare the friction bound (46) with the saturation bound (38),

written as AT > 31knnlogn , we see th-t the fcrmer is stronger when

, (31/30)vnlogu
kit > g(n)in, with g(n) r- 2 i If we now consider the crude fan-in

argument that prescribes T > Tlog(kn) (for a suitable constant 7), we see

that k/T > g(n)/n is satisfied by feasible computation times only if k/T > k /T
0 ~0

where k0 - .(;(n)--ogn/n) is the solution of k/(1.og(kn)) - g(n)/n, and

0 - ( 'vnogn) (see Figure 2).

-7-
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3.5 Summary

We conclude this section with a summary of known lower bounds on sorting

given in Table I. Bounds on T follow from trivial fan-in arguments. Bounds

on A are due to Leighton (11] for long keys, and to Siegel (12] for short and

intermediate-length keys. Bisection bounds on AT2 for long keys are due to

Thompson (1] (for word-level protocols) and Leighton [ 11] (for arbitrary

protocols). For short and medium-length keys bisection bounds are due to

Siegel [12,131 . An alternative proof of AT2 - Q(n2h2), based on primary and

secondary flow, is given in [141. The remaining bounds are those given in this

2paper. The AT - Sl(nr) result has been independently obtained in [12].

The above bounds show that the area-time complexity of sorting is determined

by different computational mechanisms, each of which dominates for a particular ,.

range of keylengths and computation times. An effective overview of the

different bounds is provided by Figure 2.

All the lower bounds of Table I are known to be tight or nearly tight.

Several optimal circuits for (n,logn+@(logn))-sorting, (the first case of

sorting analyzed in the VLSI model, which partially overlaps with sorting of.-

intermediate-length and long keys), have been proposed by the authors (15,16,17]

and by Leighton [11]. Optimal circuits for keys of any intermediate length are giv.

2in [ 14] . Constructions that attain the AT , AT and AT/logA bounds for lung keys,

as well as constructions that are near optimal for short keys are described

in [181. Further optimal designs for several key lengths are reported by " .4

Cole and Siegel [191 (personal communication). Several designs of VLSI sorters,

potentially of practical interest even when asymptotically suboptimal, are

surveyed by Thompson [201. A systematic discussion of VLSI sorting can be

found in [14 ].

........................................................ ..
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4. Other Applications

The lower-bound techniques of Section 2 afford the analysis of several other

problems beside those discussed in Section 3. A few results are stated and

co-nted on below. The proofs are similar in flavor to those given in

Section 3, and are omitted here for the sake of brevity.

CYCLIC SHIFT. The input of the (n,k)-cyclic-shift problem is a pair (X,s),

where X is an n x k binary array, s E {0,1,...,n- }, and the output is a biaary

array Y such that Y - X
j (j-s)mod n'

Theorem 12. Any VLSI (n,k)-cyclic-shifter satisfies the bounds

AT - Q(kn 2 (48a)

AT 3/(kn3 /2 (48b)

Comments. A detailed proof of Theorem 15 is given in [141. Result (48a) has

also been reported in [4].

* MRGNG. The (n,k)-merging problem is the specialization of (n,k)-sorting when

the input subsequences (X X...,X and (Xn/2 , xn I) are sorted.

Theorem 13. Any VLSI (n,k)-merger satisfies t 2 following bounds. For

Ak
* k < logn, and r = 2

2AT- £,(nr) , (49a)
' l1/2)

AT Q(nr 1/ . (49b)

For k > logn:

AT - .((k-logn)n), (49c)

AT - a((k-logn)n 3 2 ), (49d)

AT/logA - 1((k-logn)n) . (49e)

! .. ....... ........-'-'-.-:-. ,'-'-' ... * ,---"-'-',.-. . ".. .. ... ""--. * :.:-
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Comments. Bounds (49a), (49b) and (49e) are identical in the order to those

obtained for (n,k)-sorting. Bounds (49c) and (49d) are a factor of loe."

smaller. The reason is that while primary flow is of the same order in both

problems, the secondary flow is a factor of logn smaller for merging. Indeed,

e(n) bits are necessary and sufficient to specify a merging permutation.

RECORD SORTING. A formulation of sorting, more general than the one considered

in Section 2, assumes that the n items to be sorted are records of two fields,

the key (of k bits) and the information (of p bits). The output is the

multiset of input records rearranged in order of nondecreasing keys.

Sorting is called stable when records with the same key preserve in the output

sequence the same relative order they had in the input sequence,.

theorem 14. A VLSI stable sorter of records, with k < p and k < logn, satisfies

the bounds

2 2AT (pn k) (50a)

1/2
AT = Q(pn(nk) )/2)(50b)

Comments. Proofs are similar to those of Theorems 9 and 10. However, observe

that there is no analogous to Theorem 14, since the bit positions of the

* .nformation field do not interact with each other.

The lower bound techniques of this paper are certainly applicable to

other problems, and we hope they will contribute to a coherent formulation of

*-i-S] computation theory.

... . .... .. .
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